Effect of the Pulsatile Extracorporeal Membrane Oxygenation on Hemodynamic Energy and Systemic Microcirculation in a Piglet Model of Acute Cardiac Failure.
نویسندگان
چکیده
The objective of this study was to compare the effects of pulsatile and nonpulsatile extracorporeal membrane oxygenation (ECMO) on hemodynamic energy and systemic microcirculation in an acute cardiac failure model in piglets. Fourteen piglets with a mean body weight of 6.08 ± 0.86 kg were divided into pulsatile (N = 7) and nonpulsatile (N = 7) ECMO groups. The experimental ECMO circuit consisted of a centrifugal pump, a membrane oxygenator, and a pneumatic pulsatile flow generator system developed in-house. Nonpulsatile ECMO was initiated at a flow rate of 140 mL/kg/min for the first 30 min with normal heart beating, with rectal temperature maintained at 36°C. Ventricular fibrillation was then induced with a 3.5-V alternating current to generate a cardiac dysfunction model. Using this model, we collected the data on pulsatile and nonpulsatile groups. The piglets were weaned off ECMO at the end of the experiment (180 min after ECMO was initiated). The animals did not receive blood transfusions, inotropic drugs, or vasoactive drugs. Blood samples were collected to measure hemoglobin, methemoglobin, blood gases, electrolytes, and lactic acid levels. Hemodynamic energy was calculated using the Shepard's energy equivalent pressure. Near-infrared spectroscopy was used to monitor brain and kidney perfusion. The pulsatile ECMO group had a higher atrial pressure (systolic and mean), and significantly higher regional saturation at the brain level, than the nonpulsatile group (for both, P < 0.05). Additionally, the pulsatile ECMO group had higher methemoglobin levels within the normal range than the nonpulsatile group. Our study demonstrated that pulsatile ECMO produces significantly higher hemodynamic energy and improves systemic microcirculation, compared with nonpulsatile ECMO in acute cardiac failure.
منابع مشابه
ECMO Maintains Cerebral Blood Flow During Endotoxic Shock in Piglets
Cerebrovascular injury while on extracorporeal membrane oxygenation (ECMO) may be caused by excessive brain perfusion during hypoxemic reperfusion. Previous studies have postulated that the most vulnerable period of time for cerebrovascular injury is during the transfer period to ECMO. Therefore, our objective was to compare brain perfusion and hemodynamics in a piglet endotoxic shock ECMO mode...
متن کاملAcute hemodynamic, respiratory and metabolic alterations after blood contact with a volume priming and extracorporeal life support circuit: an experimental study.
OBJECTIVE To investigate the hemodynamic, respiratory and metabolic impact of blood contact with a priming volume and extracorporeal membrane oxygenation circuit, before the initiation of oxygenation and ventilation METHODS Five animals were instrumented and submitted to extracorporeal membrane oxygenation. Data were collected at the baseline and 30 minutes after starting extracorporeal circu...
متن کاملEffect of percutaneous ventricular assist devices on renal function.
Ventricular assist devices (VADs) are used to improve the systemic circulation and to decrease ventricular loading in patients with hemodynamic instability that is refractory to pharmacologic therapies. During an acute critical event, percutaneous devices are preferred because of their rapid deployment, since implantable devices require more extensive procedures. Implantable devices are used fo...
متن کاملSuccessful use of extracorporeal membrane oxygenation in the reversal of cardiorespiratory failure induced by atonic uterine bleeding: a case report
INTRODUCTION Although extracorporeal membrane oxygenation has made sufficient progress to be considered for the management of life-threatening cardiac and respiratory failure, the risk of hemorrhagic complications may outweigh the benefits for patients with bleeding tendencies. We report, to the best of our knowledge, the first case of successful treatment by extracorporeal membrane oxygenation...
متن کاملEffect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery
A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial organs
دوره 40 1 شماره
صفحات -
تاریخ انتشار 2016